bore Java SE

forthe

URERRE. = -

/ 5 N
n'/qf\ % / \\\\\"’" ez |\\n \.‘- N
s\ ENCONY -"3'{,, £
\L\\mw, m: TS
"‘\\\\\\\

©

Core Java® SE 9
for the Impatient

Second Edition

This page intentionally left blank

Core Java® SE 9
for the Impatient

Second Edition

Cay S. Horstmann

vvAddison-Wesley

Boston ¢ Columbus ¢ Indianapolis ® New York ¢ San Francisco ¢ Amsterdam ¢ Cape Town
Dubai ¢ London ¢ Madrid ¢ Milan ® Munich e Paris ® Montreal ® Toronto ® Delhi ¢ Mexico City
Sao Paulo ¢ Sydney ¢ Hong Kong ¢ Seoul ¢ Singapore ¢ Taipei ® Tokyo

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017947587

Copyright © 2018 Pearson Education, Inc.

Screenshots of Eclipse. Published by The Eclipse Foundation.
Screenshots of Java. Published by Oracle.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-469472-6
ISBN-10: 0-13-469472-4

1 17

To Chi—the most patient person in my life.

This page intentionally left blank

Preface

Contents

poel

Acknowledgments xxiil

About the Author XXV

FUNDAMENTAL PROGRAMMING STRUCTURES

1.1

1.2

1.3

Our First Program 2

1.1.1 Dissecting the “Hello, World” Program 2
1.1.2 Compiling and Running a Java Program 3
1.1.3 Method Calls 6

1.1.4 JShell 7

Primitive Types 10

1.2.1 Signed Integer Types 10

1.2.2 Floating-Point Types 12

1.2.3 The char Type 13

1.2.4 The boolean Type 14

Variables 14

1.3.1 Variable Declarations 14

1.3.2 Names 14

vii

1.4

1.5

1.6

1.7

1.8

1.3.3
1.3.4

Initialization 15
Constants 15

Arithmetic Operations 17

14.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
Strings
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6

1.6.1
1.6.2

Assignment 18
Basic Arithmetic 18

Mathematical Methods 19

Number Type Conversions

20

Relational and Logical Operators

Big Numbers 23
24
Concatenation 24
Substrings 25
String Comparison 25

Converting Between Numbers and Strings

The String API 28

Code Points and Code Units
Input and Output 32

Reading Input 32
Formatted Output 33

Control Flow 36

1.7.1
1.7.2
1.7.3
1.7.4

Branches 36
Loops 38

30

Breaking and Continuing 39

Local Variable Scope 41

Arrays and Array Lists 43

1.8.1
1.8.2
1.8.3
1.8.4
1.8.5
1.8.6
1.8.7
1.8.8
1.8.9

Working with Arrays 43
Array Construction 44
Array Lists 45

22

Wrapper Classes for Primitive Types
The Enhanced for Loop 47
Copying Arrays and Array Lists

Array Algorithms 49

Command-Line Arguments

Multidimensional Arrays

50

49

47

46

27

1.9 Functional Decomposition 52
1.9.1 Declaring and Calling Static Methods 53
1.9.2 Array Parameters and Return Values 53
1.9.3 Variable Arguments 53

Exercises 54

OBJECT-ORIENTED PROGRAMMING 59

2.1

2.2

2.3

2.4

2.5

Working with Objects 60

211 Accessor and Mutator Methods 62
2.1.2 Object References 63
Implementing Classes 65

2.2.1 Instance Variables 65

2.2.2 Method Headers 65

2.2.3 Method Bodies 66

2.2.4 Instance Method Invocations 66
2.2.5 The this Reference 67

2.2.6 Call by Value 68

Object Construction 69

2.3.1 Implementing Constructors 69
2.3.2 Overloading 70

2.3.3 Calling One Constructor from Another 71
2.3.4 Default Initialization 71

2.3.5 Instance Variable Initialization 72
2.3.6 Final Instance Variables 73

2.3.7 The Constructor with No Arguments 73
Static Variables and Methods 74

2.4.1 Static Variables 74

2.4.2 Static Constants 75

2.4.3 Static Initialization Blocks 76

2.44 Static Methods 77

245 TFactory Methods 78

Packages 78

2.5.1 Package Declarations 79

2.5.2 The jar Command 80

2.5.3 The Class Path 81
2.5.4 Package Access 83
2.5.,5 Importing Classes 83
2.5.6 Static Imports 85
2.6 Nested Classes 85
2.6.1 Static Nested Classes 85
2.6.2 Inner Classes 87
2.6.3 Special Syntax Rules for Inner Classes 89
2.7 Documentation Comments 90
2.7.1 Comment Insertion 90
2.7.2 Class Comments 91
2.7.3 Method Comments 92
2.7.4 Variable Comments 92
2.7.5 General Comments 92
2.7.6 Links 93
2.7.7 Package, Module, and Overview Comments
2.7.8 Comment Extraction 94
Exercises 95

3 INTERFACES AND LAMBDA EXPRESSIONS
Interfaces 100

3.1

3.2

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.1.7

Declaring an Interface 100
Implementing an Interface 101
Converting to an Interface Type 103
Casts and the instanceof Operator 103
Extending Interfaces 104
Implementing Multiple Interfaces 105
Constants 105

Static, Default, and Private Methods 105

3.2.1
3.2.2
3.2.3
3.24

Static Methods 105
Default Methods 106

Resolving Default Method Conflicts 107

Private Methods 109

99

94

3.3 Examples of Interfaces 109
3.3.1 The cComparable Interface 109
3.3.2 The comparator Interface 111
3.3.3 The Runnable Interface 112
3.3.4 User Interface Callbacks 112
3.4 Lambda Expressions 113
3.4.1 The Syntax of Lambda Expressions 114
3.4.2 Functional Interfaces 115
3.5 Method and Constructor References 116
3.5.1 Method References 117
3.5.2 Constructor References 118
3.6 Processing Lambda Expressions 119
3.6.1 Implementing Deferred Execution 119
3.6.2 Choosing a Functional Interface 120
3.6.3 Implementing Your Own Functional Interfaces 123
3.7 Lambda Expressions and Variable Scope 124
3.7.1 Scope of a Lambda Expression 124
3.7.2 Accessing Variables from the Enclosing Scope 124
3.8 Higher-Order Functions 127
3.8.1 Methods that Return Functions 127
3.8.2 Methods That Modify Functions 128
3.8.3 Comparator Methods 128
3.9 Local and Anonymous Classes 129
3.91 Local Classes 129
3.9.2 Anonymous Classes 130

Exercises 131

INHERITANCE AND REFLECTION 135
4.1 Extending a Class 136
41.1 Super- and Subclasses 136
4.1.2 Defining and Inheriting Subclass Methods 137
41.3 Method Overriding 137
414 Subclass Construction 139

4.1.5 Superclass Assignments 139
41.6 Casts 140
4.1.7 Final Methods and Classes 141
4.1.8 Abstract Methods and Classes 141
41.9 Protected Access 142
4.1.10 Anonymous Subclasses 143
4.1.11 Inheritance and Default Methods 144
4.1.12 Method Expressions with super 145
4.2 object: The Cosmic Superclass 145
421 The tostring Method 146
4.2.2 The equals Method 148
4.2.3 The hashCode Method 150
424 Cloning Objects 151
4.3 Enumerations 154
4.3.1 Methods of Enumerations 155
4.3.2 Constructors, Methods, and Fields 156
4.3.3 Bodies of Instances 157
4.3.4 Static Members 157
4.3.5 Switching on an Enumeration 158
4.4 Runtime Type Information and Resources 159
441 The Class Class 159
442 Loading Resources 162
44.3 Class Loaders 163
444 The Context Class Loader 164
4.4.5 Service Loaders 166
4.5 Reflection 168
451 Enumerating Class Members 168
4.5.2 Inspecting Objects 169
453 Invoking Methods 171
454 Constructing Objects 171
455 JavaBeans 172
45.6 Working with Arrays 174
45.7 Proxies 175
Exercises 177

5 EXCEPTIONS, ASSERTIONS, AND LOGGING 181
5.1 Exception Handling 182
51.1 Throwing Exceptions 182
5.1.2 The Exception Hierarchy 183
5.1.3 Declaring Checked Exceptions 185
5.1.4 Catching Exceptions 186
5.1.5 The Try-with-Resources Statement 187
5.1.6 The finally Clause 189
5.1.7 Rethrowing and Chaining Exceptions 190
5.1.8 Uncaught Exceptions and the Stack Trace 192
5.1.9 The oObjects.requireNonNull Method 193
5.2 Assertions 193
5.2.1 Using Assertions 194
5.2.2 Enabling and Disabling Assertions 194
5.3 Logging 195
5.3.1 Using Loggers 195
5.3.2 Loggers 196
5.3.3 Logging Levels 197
5.3.4 Other Logging Methods 197
5.3.5 Logging Configuration 199
53.6 Log Handlers 200
5.3.7 Filters and Formatters 202
Exercises 203

6 GENERIC PROGRAMMING 207

6.1 Generic Classes 208

6.2 Generic Methods 209

6.3 Type Bounds 210

6.4 Type Variance and Wildcards 211
6.4.1 Subtype Wildcards 212
6.4.2 Supertype Wildcards 213
6.4.3 Wildcards with Type Variables 214
6.4.4 Unbounded Wildcards 215
6.4.5 Wildcard Capture 216

6.5 Generics in the Java Virtual Machine 216
6.5.1 Type Erasure 217
6.5.2 Cast Insertion 217
6.5.3 Bridge Methods 218
6.6 Restrictions on Generics 220
6.6.1 No Primitive Type Arguments 220
6.6.2 At Runtime, All Types Are Raw 220
6.6.3 You Cannot Instantiate Type Variables 221

6.6.4 You Cannot Construct Arrays of Parameterized
Types 223

6.6.5 Class Type Variables Are Not Valid in Static
Contexts 224

6.6.6 Methods May Not Clash after Erasure 224
6.6.7 Exceptions and Generics 225

6.7 Reflection and Generics 226
6.7.1 The Class<T> Class 227

6.7.2 Generic Type Information in the Virtual
Machine 227

Exercises 229

7 COLLECTIONS 235
7.1 An Overview of the Collections Framework 236
7.2 [terators 240
7.3 Sets 242
7.4 Maps 243
7.5 Other Collections 247
7.5.1 Properties 247
7.5.2 Bit Sets 248
7.5.3 Enumeration Sets and Maps 250
7.5.4 Stacks, Queues, Deques, and Priority Queues 250
7.5.5 ~Weak Hash Maps 251
7.6 Views 252
7.6.1 Small Collections 252
7.6.2 Ranges 253

Contents

7.6.3 Unmodifiable Views 254

Exercises 255

STREAMS 259

8.1 From Iterating to Stream Operations 260

8.2 Stream Creation 261

8.3 The filter, map, and flatMap Methods 263

8.4 Extracting Substreams and Combining Streams 264

8.5 Other Stream Transformations 265

8.6 Simple Reductions 266

8.7 The Optional Type 267
8.7.1 How to Work with Optional Values 267
8.7.2 How Not to Work with Optional Values 269
8.7.3 Creating Optional Values 269
8.7.4 Composing Optional Value Functions with flatMap 269
8.7.5 Turning an Optional Into a Stream 270

8.8 Collecting Results 271

8.9 Collecting into Maps 273

8.10 Grouping and Partitioning 274

8.11 Downstream Collectors 275

8.12 Reduction Operations 277

8.13 Primitive Type Streams 279

8.14 Parallel Streams 280

Exercises 283

PROCESSING INPUT AND OUTPUT 287

9.1

Input/ Output Streams, Readers, and Writers 288
9.1.1 Obtaining Streams 288

9.1.2 Reading Bytes 289

9.1.3 Writing Bytes 290

914 Character Encodings 290

915 Text Input 293

91.6 Text Output 294

9.1.7 Reading and Writing Binary Data 295

9.1.8 Random-Access Files 296
9.1.9 Memory-Mapped Files 297
9.1.10 File Locking 297
9.2 Paths, Files, and Directories 298
9.2.1 Paths 298
9.2.2 Creating Files and Directories 300
9.2.3 Copying, Moving, and Deleting Files 301
9.24 Visiting Directory Entries 302
9.2.5 ZIP File Systems 305
9.3 HTTP Connections 306
9.3.1 The URLConnection and HttpURLConnection Classes 306
9.3.2 The HTTP Client API 307
9.4 Regular Expressions 310
941 The Regular Expression Syntax 310
9.4.2 Finding One Match 314
9.4.3 Finding All Matches 315
9.4.4 Groups 316
9.4.5 Splitting along Delimiters 317
9.4.6 Replacing Matches 317
9.4.7 Flags 318
9.5 Serialization 319
9.5.1 The Serializable Interface 319
9.5.2 Transient Instance Variables 321
9.5.3 The readobject and writeobject Methods 321
9.5.4 The readResolve and writeReplace Methods 322
9.5.,5 Versioning 324
Exercises 325

IO CONCURRENT PROGRAMMING 329
10.1 Concurrent Tasks 330
10.1.1 Running Tasks 330
10.1.2 Futures 333

10.2 Asynchronous Computations 335
10.2.1 Completable Futures 335

IT

10.3

10.4

10.5

10.6
10.7

10.8

10.9

10.2.2 Composing Completable Futures 337
10.2.3 Long-Running Tasks in User-Interface Callbacks 340
Thread Safety 341

10.3.1 Visibility 342

10.3.2 Race Conditions 344

10.3.3 Strategies for Safe Concurrency 346
10.3.4 Immutable Classes 347

Parallel Algorithms 348

10.4.1 Parallel Streams 348

10.4.2 Parallel Array Operations 349
Threadsafe Data Structures 350

10.5.1 Concurrent Hash Maps 350

10.5.2 Blocking Queues 352

10.5.3 Other Threadsafe Data Structures 354
Atomic Counters and Accumulators 354
Locks and Conditions 357

10.7.1 Locks 357

10.7.2 The synchronized Keyword 358

10.7.3 Waiting on Conditions 360

Threads 362

10.8.1 Starting a Thread 363

10.8.2 Thread Interruption 364

10.8.3 Thread-Local Variables 365

10.8.4 Miscellaneous Thread Properties 366
Processes 366

10.9.1 Building a Process 367

10.9.2 Running a Process 368

10.9.3 Process Handles 370

Exercises 371

ANNOTATIONS 377

11.1

Using Annotations 378
11.1.1 Annotation Elements 378
11.1.2 Multiple and Repeated Annotations 380

11.1.3 Annotating Declarations 380
11.1.4 Annotating Type Uses 381
11.1.5 Making Receivers Explicit 382
11.2 Defining Annotations 383
11.3 Standard Annotations 386
11.3.1 Annotations for Compilation 387
11.3.2 Annotations for Managing Resources 388
11.3.3 Meta-Annotations 389
11.4 Processing Annotations at Runtime 391
11.5 Source-Level Annotation Processing 394
11.5.1 Annotation Processors 394
11.5.2 The Language Model API 395
11.5.3 Using Annotations to Generate Source Code 395
Exercises 398

12 THE DATE AND TIME API 401
12.1 The Time Line 402
12.2 Local Dates 404
12.3 Date Adjusters 407
12.4 Local Time 409
12.5 Zoned Time 410
12.6 Formatting and Parsing 413
12.7 Interoperating with Legacy Code 416
Exercises 417

I3 INTERNATIONALIZATION 421

13.1 Locales 422
13.1.1 Specifying a Locale 423
13.1.2 The Default Locale 426
13.1.3 Display Names 426

13.2 Number Formats 427

13.3 Currencies 428

13.4 Date and Time Formatting 429

13.5 Collation and Normalization 431

13.6 Message Formatting 433

13.7 Resource Bundles 435
13.7.1 Organizing Resource Bundles 435
13.7.2 Bundle Classes 437

13.8 Character Encodings 438

13.9 Preferences 439

Exercises 441

COMPILING AND SCRIPTING 443
14.1 The Compiler API 444
14.1.1 Invoking the Compiler 444
14.1.2 Launching a Compilation Task 444
14.1.3 Reading Source Files from Memory 445
14.1.4 Writing Byte Codes to Memory 446
14.1.5 Capturing Diagnostics 447
14.2 The Scripting API 448
14.2.1 Getting a Scripting Engine 448
14.2.2 Bindings 449
14.2.3 Redirecting Input and Output 449
14.2.4 Calling Scripting Functions and Methods 450
14.2.5 Compiling a Script 452
14.3 The Nashorn Scripting Engine 452
14.3.1 Running Nashorn from the Command Line 452

14.3.2 Invoking Getters, Setters, and Overloaded
Methods 453

14.3.3 Constructing Java Objects 454
14.3.4 Strings in JavaScript and Java 455
14.3.5 Numbers 456

14.3.6 Working with Arrays 457

14.3.7 Lists and Maps 458

14.3.8 Lambdas 458

14.3.9 Extending Java Classes and Implementing Java
Interfaces 459

14.3.10 Exceptions 461

14.4 Shell Scripting with Nashorn 461
14.4.1 Executing Shell Commands 462
14.4.2 String Interpolation 462
14.4.3 Script Inputs 463

Exercises 464

IS5 THE JAVA PLATFORM MODULE SYSTEM 469
151 The Module Concept 470
15.2 Naming Modules 472
15.3 The Modular “Hello, World!” Program 472
154 Requiring Modules 474
15.5 Exporting Packages 476
15.6 Modules and Reflective Access 479
15.7 Modular JARs 482
15.8 Automatic Modules and the Unnamed Module 484
15.9 Command-Line Flags for Migration 485
15.10 Transitive and Static Requirements 487
15.11 Qualified Exporting and Opening 489
15.12 Service Loading 490
15.13 Tools for Working with Modules 491

Exercises 494

Index 497

Preface

Java is now over twenty years old, and the classic book, Core Java, covers, in
meticulous detail, not just the language but all core libraries and a multitude
of changes between versions, spanning two volumes and well over
2,000 pages. However, if you just want to be productive with modern Java,
there is a much faster, easier pathway for learning the language and core li-
braries. In this book, I don't retrace history and dont dwell on features of
past versions. I show you the good parts of Java as it exists today, with Java 9,
so you can put your knowledge to work quickly.

As with my previous “Impatient” books, I quickly cut to the chase, showing
you what you need to know to solve a programming problem without lecturing
about the superiority of one paradigm over another. I also present the infor-
mation in small chunks, organized so that you can quickly retrieve it when
needed.

Assuming you are proficient in some other programming language, such as
C++, JavaScript, Objective C, PHP, or Ruby, with this book you will learn
how to become a competent Java programmer. I cover all aspects of Java that
a developer needs to know, including the powerful concepts of lambda ex-
pressions and streams. I tell you where to find out more about old-fashioned
concepts that you might still see in legacy code, but I don't dwell on them.

A key reason to use Java is to tackle concurrent programming. With parallel
algorithms and threadsafe data structures readily available in the Java library,

xxi

Preface

the way application programmers should handle concurrent programming
has completely changed. I provide fresh coverage, showing you how to use
the powerful library features instead of error-prone low-level constructs.

Traditionally, books on Java have focused on user interface programming—but
nowadays, few developers produce user interfaces on desktop computers.
If you intend to use Java for server-side programming or Android program-
ming, you will be able to use this book effectively without being distracted
by desktop GUI code.

Finally, this book is written for application programmers, not for a college
course and not for systems wizards. The book covers issues that application
programmers need to wrestle with, such as logging and working with files—but
you won't learn how to implement a linked list by hand or how to write a
web server.

I hope you enjoy this rapid-fire introduction into modern Java, and I hope it
will make your work with Java productive and enjoyable.

If you find errors or have suggestions for improvement, please visit
http://horstmann.com/javaimpatient and leave a comment. On that page, you will
also find a link to an archive file containing all code examples from the book.

Acknowledgments

My thanks go, as always, to my editor Greg Doench, who enthusiastically
supported the vision of a short book that gives a fresh introduction to Java
SE 9. Dmitry Kirsanov and Alina Kirsanova once again turned an XHTML
manuscript into an attractive book with amazing speed and attention to detalil.
My special gratitude goes to the excellent team of reviewers for both editions
who spotted many errors and gave thoughtful suggestions for improvement.
They are: Andres Almiray, Gail Anderson, Paul Anderson, Marcus Biel, Brian
Goetz, Marty Hall, Mark Lawrence, Doug Lea, Simon Ritter, Yoshiki Shibata,
and Christian Ullenboom.

Cay Horstmann
San Francisco
July 2017

xxiii

This page intentionally left blank

Ahout the Author

Cay S. Horstmann is the author of Java SE 8 for the Really Impatient and Scala
for the Impatient (both from Addison-Wesley), is principal author of Core Java'",
Volumes I and 1I, Tenth Edition (Prentice Hall, 2016), and has written a dozen
other books for professional programmers and computer science students.
He is a professor of computer science at San Jose State University and is a
Java Champion.

XXV

Fundamental
Programming
Structures

Topics in This Chapter

= 1.1 Our First Program — page 2

= 1.2 Primitive Types — page 10

= 1.3 Variables — page 14

= 1.4 Arithmetic Operations — page 17

= 1.5 Strings — page 24

= 1.6 Input and Output — page 32

= 1.7 Control Flow — page 36

= 1.8 Arrays and Array Lists — page 43

= 1.9 Functional Decomposition — page 52

= Exercises — page 54

Chapfer

In this chapter, you will learn about the basic data types and control structures
of the Java language. I assume that you are an experienced programmer in
some other language and that you are familiar with concepts such as variables,
loops, function calls, and arrays, but perhaps with a different syntax. This
chapter will get you up to speed on the Java way. I will also give you some
tips on the most useful parts of the Java API for manipulating common data

types.
The key points of this chapter are:

1. InJava, all methods are declared in a class. You invoke a nonstatic method
on an object of the class to which the method belongs.

2. Static methods are not invoked on objects. Program execution starts with
the static main method.

3. Java has eight primitive types: four signed integral types, two floating-
point types, char, and boolean.

4. The Java operators and control structures are very similar to those of C
or JavaScript.

The Math class provides common mathematical functions.

String objects are sequences of characters or, more precisely, Unicode
code points in the UTF-16 encoding.

Chapter 1 m Fundamental Programming Structures

7. With the System.out object, you can display output in a terminal window.

A Scanner tied to System.in lets you read terminal input.

8. Arrays and collections can be used to collect elements of the same type.

1.1 Our First Program

When learning any new programming language, it is traditional to start with
a program that displays the message “Hello, World!”. That is what we will
do in the following sections.

1.1.1 Dissecting the “Hello, World” Program

Without further ado, here is the “Hello, World” program in Java.

package ch0l.sec0l;

// Our first Java program

public class HelloWorld {

}

public static void main(String[] args) {
System.out.println("Hello, World!");
}

Let's examine this program:

Java is an object-oriented language. In your program, you manipulate
(mostly) objects by having them do work. Each object that you manipu-
late belongs to a specific class, and we say that the object is an instance
of that class. A class defines what an object’s state can be and and what
it can do. In Java, all code is defined inside classes. We will look at objects
and classes in detail in Chapter 2. This program is made up of a single
class HellowWorld.

main is a method, that is, a function declared inside a class. The main method
is the first method that is called when the program runs. It is declared as
static to indicate that the method does not operate on any objects. (When
main gets called, there are only a handful of predefined objects, and none
of them are instances of the HelloWorld class.) The method is declared as
void to indicate that it does not return any value. See Section 1.8.8,
“Command-Line Arguments” (page 49) for the meaning of the parameter
declaration String[] args.

In Java, you can declare many features as public or private, and there are
a couple of other visibility levels as well. Here, we declare the HelloWorld

1.1 m Our First Program

class and the main method as public, which is the most common arrangement
for classes and methods.

e A package is a set of related classes. It is a good idea to place each class
in a package so you can group related classes together and avoid conflicts
when multiple classes have the same name. In this book, we'll use chapter
and section numbers as package names. The full name of our class is
che1.seco1.HelloWorld. Chapter 2 has more to say about packages and package
naming conventions.

e The line starting with // is a comment. All characters between // and the
end of the line are ignored by the compiler and are meant for human
readers only.

e Finally, we come to the body of the main method. In our example, it consists
of a single line with a command to print a message to System.out, an object
representing the “standard output” of the Java program.

As you can see, Java is not a scripting language that can be used to quickly
dash off a few commands. It is squarely intended as a language for larger
programs that benefit from being organized into classes, packages, and
modules. (Modules are introduced in Chapter 15.)

Java is also quite simple and uniform. Some languages have global variables
and functions as well as variables and methods inside classes. In Java, every-
thing is declared inside a class. This uniformity can lead to somewhat verbose
code, but it makes it easy to understand the meaning of a program.

% NOTE: You have just seen a // comment that extends to the end of
the line. You can also have multiine comments between /+ and */
delimiters, such as
/*
This is the first sample program in Core Java for the Impatient.
The program displays the traditional greeting "Hello, World!".
*/
There is a third comment style, called documentation comment, with /+x
and */ as delimiters, that you will see in the next chapter.

1.1.2 Compiling and Running a Java Program

To compile and run this program, you need to install the Java Development
Kit (JDK) and, optionally, an integrated development environment (IDE). You
should also download the sample code, which you will find at the companion
website for this book, http://horstmann.com/javaimpatient. Since instructions for

Chapter 1 m Fundamental Programming Structures

installing software don't make for interesting reading, I put them on the
companion website as well.

Once you have installed the JDK, open a terminal window, change to the
directory containing the che1 directory, and run the commands

javac ch0@1/sec01/HelloWorld.java
java ch01.sec01.HelloWorld

The familiar greeting will appear in the terminal window (see Figure 1-1).

Note that two steps were involved to execute the program. The javac command
compiles the Java source code into an intermediate machine-independent
representation, called byte codes, and saves them in class files. The java com-
mand launches a virtual machine that loads the class files and executes the
byte codes.

Once compiled, byte codes can run on any Java virtual machine, whether on
your desktop computer or on a device in a galaxy far, far away. The promise
of “write once, run anywhere” was an important design criterion for Java.

~$ cd books/cji/code

~/books/cji/code$ javac ch@l/sec@l/HelloWorld.java
~/books/cji/code$ 1s ch0l/secBdl

HelloWorld.class HellowWorld.java MethodDemo.java
~/books/cji/codefijava ch@l.sec®l.HelloWorld
Hello, World!

~/bookk/cji/codes |

Class file

Program output

Figure 1-1 Running a Java program in a terminal window

1.1 m Our First Program “

E NOTE: The javac compiler is invoked with the name of a file, with slashes
separating the path segments, and an extension .java. The java virtual
machine launcher is invoked with the name of a class, with dots

separating the package segments, and no extension.

To run the program in an IDE, you need to first make a project, as described
in the installation instructions. Then, select the Helloworld class and tell the IDE
to run it. Figure 1-2 shows how this looks in Eclipse. Eclipse is a popular
IDE, but there are many other excellent choices. As you get more comfortable
with Java programming, you should try out a few and pick one that you like.

Java - Core Java for the Impatient/ch01/sec0l/HelloWorld.java - Eclipse

File Edit Source Refactor Navigate Search Project Run Window Help

HE iwider O - Q-8 @ -i®F iy f AR
-] Java EE & Java
2 Package Explorer 2 = 0 [J] Helloworld.java 2 IntegerDemo.java = B g Outline =R
BEg - i package chel.sec@l; B 4 & o o w
= @ Core Java for the Impatient W 3 // Our first Java program -
4
= i chol.5ec01 © 5 public class Helloworld { # chol.sec0l
v O Helloworld.java M os public static void main(String[] args) { - €. Helloworld
< @ ch0l.sec02 7 System.out.printin("Hello, World!"); . - .
3 . il 8 } @ ° main(String[]}
b [§ IntegerDemo.java 9 ¥
{3 chol.sec03 10

8 ch0l1.sec04
ch0l.sec05
ch01.5ec06
I # ch0l.sec07
5 ch01.sec08
ch0l.sec09
I =4 |RE System Library [jdk1
= RemoteSystemsTempFiles

Program Output

Problems Javadoc reclaration & Console 3 = a
x % & & [gEg -~ o
<terminated> HelbWorld [Java Application] /data/apps/jdk1.8.0/binfjava (8 juin 2014 14:30:40)
Hello, world! H

Figure 1-2 Running a Java program inside the Eclipse IDE

Congratulations! You have just followed the time-honored ritual of running
the “Hello, World!” program in Java. Now we are ready to examine the basics
of the Java language.

Chapter 1 m Fundamental Programming Structures

1.1.3 Method Calls

Let us have a closer look at the single statement of the main method:
System.out.printin("Hello, World!");

System.out is an object. It is an instance of a class called PrintStream. The PrintStream
class has methods println, print, and so on. These methods are called instance
methods because they operate on objects, or instances, of the class.

To invoke an instance method on an object, you use the dot notation

object.methodName(arquments)
In this case, there is just one argument, the string "Hello, World!".

Let's try it with another example. Strings such as "Hello, World!" are instances
of the string class. The String class has a method length that returns the length of
a String object. To call the method, you again use the dot notation:

"Hello, World!".length()
The length method is invoked on the object "Hello, World!", and it has no argu-

ments. Unlike the println method, the length method returns a result. One way
of using that result is to print it:

System.out.println("Hello, World!".length());

Give it a try. Make a Java program with this statement and run it to see how
long the string is.

In Java, you need to construct most objects (unlike the system.out and "Hello,
World!" objects, which are already there, ready for you to use). Here is a simple
example.

An object of the Randon class can generate random numbers. You construct a
Random object with the new operator:

new Random()

After the class name is the list of construction arguments, which is empty in
this example.

You can call a method on the constructed object. The call
new Random().nextInt()

yields the next integer that the newly constructed random number generator
has to offer.

If you want to invoke more than one method on an object, store it in a
variable (see Section 1.3, “Variables,” page 14). Here we print two random
numbers:

1.1 m Our First Program

Random generator = new Random();
System.out.printin(generator.nextInt());
System.out.println(generator.nextInt());

NOTE: The Random class is declared in the java.util package. To use it
in your program, add an import statement, like this:

package ch0l.sec0l;

import java.util.Random;

public class MethodDemo {

}
We will look at packages and the import statement in more detail in
Chapter 2.

1.1.4 JShell

In Section 1.1.2, “Compiling and Running a Java Program” (page 3), you saw
how to compile and run a Java program. Java 9 introduces another way of
working with Java. The JShell program provides a “read-evaluate-print loop”
(REPL) where you type a Java expression, JShell evaluates your input, prints
the result, and waits for your next input. To start JShell, simply type jshell in
a terminal window (Figure 1-3).

JShell starts with a greeting, followed by a prompt:

| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell>

Now type any Java expression, such as
"Hello, World!".length()

JShell responds with the result and another prompt.
$1 ==> 13

jshell>

Note that you do not type System.out.println. JShell automatically prints the
value of every expression that you enter.

The $1 in the output indicates that the result is available in further calculations.
For example, if you type

3% $1+3

Chapter 1 m Fundamental Programming Structures

E] Terminal

~% jshell
| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell> "Hello, World!".length()
$1 ==> 13

jshell> new Random().nextInt()
$2 ==> -1416186035

jshell> Random generator = new Random(42)
generator ==> java.util.Random@4cf777e8

jshell> generator.nextInt()
$4 ==> -1170105035

jshell> generator.nextInt()
$5 ==> 234785527

jshell> generator.next
nextBoolean() nextBytes(nextDouble() nextFloat()
nextGaussian() nextInt(nextLong()

jshell> generator.nextl

Figure 1-3 Running JShell

the response is
$2 ==> 42
If you need a variable many times, you can give it a more memorable name.

You have to follow the Java syntax and specify both the type and the
name (see Section 1.3, “Variables,” page 14). For example,

jshell> int answer = 42
answer ==> 42

You can have JShell fill in the type for you. Type an expression and instead
of hitting the Enter key, hit Shift+Tab and then the V key. For example, when

you type
new Random()
followed by Shift+Tab and the V key, you get
jshell> Random = new Random()
with the cursor positioned just before the = symbol. Now type a variable
name and hit Enter:

jshell> Random generator = new Random()
generator ==> java.util.Random@3fee9989

1.1 m Our First Program

Another useful feature is tab completion. Type

generator.

followed by the Tab key. You get a list of all methods that you can invoke
on the generator variable:

jshell> generator.

doubles(equals(getClass() hashCode()
ints(Tongs(nextBoolean() nextBytes(
nextDouble() nextFloat() nextGaussian() nextInt(
nextLong() notify() notifyAll() setSeed(
toString() wait(

Now type ne and hit the Tab key again. The method name is completed to
next, and you get a shorter list:
jshell> generator.next

nextBoolean() nextBytes(nextDouble() nextFloat()
nextGaussian() nextInt(nextLong()

Type a D and Tab again, and now the only completion, nextbouble(), is filled
in. Hit Enter to accept it:

jshell> generator.nextDouble()
$8 ==> 0.9560346568377398

NOTE: Note that in the autocompletion list, methods that require an
argument are only followed by a left parenthesis, such as nextInt(, but
methods without arguments have both parentheses, such as nextBoolean().

[

To repeat a command, hit the T key until you see the line that you want to
reissue or edit. You can move the cursor in the line with the <— and — keys,
and add or delete characters. Hit Enter when you are done. For example, hit
T and replace Double with Int, then hit Enter:

jshell> generator.nextInt()
$9 ==> -352355569

By default, JShell imports the following packages:

java.io

java.math

java.net
java.nio.file
java.util
java.util.concurrent
java.util.function
java.util.prefs
java.util.regex
java.util.stream

