

Core Java® SE 9
for the Impatient
Second Edition

This page intentionally left blank

Core Java® SE 9
for the Impatient
Second Edition

Cay S. Horstmann

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017947587

Copyright © 2018 Pearson Education, Inc.

Screenshots of Eclipse. Published by The Eclipse Foundation.

Screenshots of Java. Published by Oracle.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-469472-6
ISBN-10: 0-13-469472-4

1 17

To Chi—the most patient person in my life.

This page intentionally left blank

Preface xxi

Acknowledgments xxiii

About the Author xxv

FUNDAMENTAL PROGRAMMING STRUCTURES 11
Our First Program 21.1

Dissecting the “Hello, World” Program 21.1.1
Compiling and Running a Java Program 31.1.2
Method Calls 61.1.3
JShell 71.1.4

Primitive Types 101.2
Signed Integer Types 101.2.1
Floating-Point Types 121.2.2
The char Type 131.2.3
The boolean Type 141.2.4

Variables 141.3
Variable Declarations 141.3.1
Names 141.3.2

vii

Contents

Initialization 151.3.3
Constants 151.3.4

Arithmetic Operations 171.4
Assignment 181.4.1
Basic Arithmetic 181.4.2
Mathematical Methods 191.4.3
Number Type Conversions 201.4.4
Relational and Logical Operators 221.4.5
Big Numbers 231.4.6

Strings 241.5
Concatenation 241.5.1
Substrings 251.5.2
String Comparison 251.5.3
Converting Between Numbers and Strings 271.5.4
The String API 281.5.5
Code Points and Code Units 301.5.6

Input and Output 321.6
Reading Input 321.6.1
Formatted Output 331.6.2

Control Flow 361.7
Branches 361.7.1
Loops 381.7.2
Breaking and Continuing 391.7.3
Local Variable Scope 411.7.4

Arrays and Array Lists 431.8
Working with Arrays 431.8.1
Array Construction 441.8.2
Array Lists 451.8.3
Wrapper Classes for Primitive Types 461.8.4
The Enhanced for Loop 471.8.5
Copying Arrays and Array Lists 471.8.6
Array Algorithms 491.8.7
Command-Line Arguments 491.8.8
Multidimensional Arrays 501.8.9

Contentsviii

Functional Decomposition 521.9
Declaring and Calling Static Methods 531.9.1
Array Parameters and Return Values 531.9.2
Variable Arguments 531.9.3

Exercises 54

OBJECT-ORIENTED PROGRAMMING 592
Working with Objects 602.1

Accessor and Mutator Methods 622.1.1
Object References 632.1.2

Implementing Classes 652.2
Instance Variables 652.2.1
Method Headers 652.2.2
Method Bodies 662.2.3
Instance Method Invocations 662.2.4
The this Reference 672.2.5
Call by Value 682.2.6

Object Construction 692.3
Implementing Constructors 692.3.1
Overloading 702.3.2
Calling One Constructor from Another 712.3.3
Default Initialization 712.3.4
Instance Variable Initialization 722.3.5
Final Instance Variables 732.3.6
The Constructor with No Arguments 732.3.7

Static Variables and Methods 742.4
Static Variables 742.4.1
Static Constants 752.4.2
Static Initialization Blocks 762.4.3
Static Methods 772.4.4
Factory Methods 782.4.5

Packages 782.5
Package Declarations 792.5.1
The jar Command 802.5.2

ixContents

The Class Path 812.5.3
Package Access 832.5.4
Importing Classes 832.5.5
Static Imports 852.5.6

Nested Classes 852.6
Static Nested Classes 852.6.1
Inner Classes 872.6.2
Special Syntax Rules for Inner Classes 892.6.3

Documentation Comments 902.7
Comment Insertion 902.7.1
Class Comments 912.7.2
Method Comments 922.7.3
Variable Comments 922.7.4
General Comments 922.7.5
Links 932.7.6
Package, Module, and Overview Comments 942.7.7
Comment Extraction 942.7.8

Exercises 95

INTERFACES AND LAMBDA EXPRESSIONS 993
Interfaces 1003.1

Declaring an Interface 1003.1.1
Implementing an Interface 1013.1.2
Converting to an Interface Type 1033.1.3
Casts and the instanceof Operator 1033.1.4
Extending Interfaces 1043.1.5
Implementing Multiple Interfaces 1053.1.6
Constants 1053.1.7

Static, Default, and Private Methods 1053.2
Static Methods 1053.2.1
Default Methods 1063.2.2
Resolving Default Method Conflicts 1073.2.3
Private Methods 1093.2.4

Contentsx

Examples of Interfaces 1093.3
The Comparable Interface 1093.3.1
The Comparator Interface 1113.3.2
The Runnable Interface 1123.3.3
User Interface Callbacks 1123.3.4

Lambda Expressions 1133.4
The Syntax of Lambda Expressions 1143.4.1
Functional Interfaces 1153.4.2

Method and Constructor References 1163.5
Method References 1173.5.1
Constructor References 1183.5.2

Processing Lambda Expressions 1193.6
Implementing Deferred Execution 1193.6.1
Choosing a Functional Interface 1203.6.2
Implementing Your Own Functional Interfaces 1233.6.3

Lambda Expressions and Variable Scope 1243.7
Scope of a Lambda Expression 1243.7.1
Accessing Variables from the Enclosing Scope 1243.7.2

Higher-Order Functions 1273.8
Methods that Return Functions 1273.8.1
Methods That Modify Functions 1283.8.2
Comparator Methods 1283.8.3

Local and Anonymous Classes 1293.9
Local Classes 1293.9.1
Anonymous Classes 1303.9.2

Exercises 131

INHERITANCE AND REFLECTION 1354
Extending a Class 1364.1

Super- and Subclasses 1364.1.1
Defining and Inheriting Subclass Methods 1374.1.2
Method Overriding 1374.1.3
Subclass Construction 1394.1.4

xiContents

Superclass Assignments 1394.1.5
Casts 1404.1.6
Final Methods and Classes 1414.1.7
Abstract Methods and Classes 1414.1.8
Protected Access 1424.1.9
Anonymous Subclasses 1434.1.10
Inheritance and Default Methods 1444.1.11
Method Expressions with super 1454.1.12

Object: The Cosmic Superclass 1454.2
The toString Method 1464.2.1
The equals Method 1484.2.2
The hashCode Method 1504.2.3
Cloning Objects 1514.2.4

Enumerations 1544.3
Methods of Enumerations 1554.3.1
Constructors, Methods, and Fields 1564.3.2
Bodies of Instances 1574.3.3
Static Members 1574.3.4
Switching on an Enumeration 1584.3.5

Runtime Type Information and Resources 1594.4
The Class Class 1594.4.1
Loading Resources 1624.4.2
Class Loaders 1634.4.3
The Context Class Loader 1644.4.4
Service Loaders 1664.4.5

Reflection 1684.5
Enumerating Class Members 1684.5.1
Inspecting Objects 1694.5.2
Invoking Methods 1714.5.3
Constructing Objects 1714.5.4
JavaBeans 1724.5.5
Working with Arrays 1744.5.6
Proxies 1754.5.7

Exercises 177

Contentsxii

EXCEPTIONS, ASSERTIONS, AND LOGGING 1815
Exception Handling 1825.1

Throwing Exceptions 1825.1.1
The Exception Hierarchy 1835.1.2
Declaring Checked Exceptions 1855.1.3
Catching Exceptions 1865.1.4
The Try-with-Resources Statement 1875.1.5
The finally Clause 1895.1.6
Rethrowing and Chaining Exceptions 1905.1.7
Uncaught Exceptions and the Stack Trace 1925.1.8
The Objects.requireNonNull Method 1935.1.9

Assertions 1935.2
Using Assertions 1945.2.1
Enabling and Disabling Assertions 1945.2.2

Logging 1955.3
Using Loggers 1955.3.1
Loggers 1965.3.2
Logging Levels 1975.3.3
Other Logging Methods 1975.3.4
Logging Configuration 1995.3.5
Log Handlers 2005.3.6
Filters and Formatters 2025.3.7

Exercises 203

GENERIC PROGRAMMING 2076
Generic Classes 2086.1
Generic Methods 2096.2
Type Bounds 2106.3
Type Variance and Wildcards 2116.4

Subtype Wildcards 2126.4.1
Supertype Wildcards 2136.4.2
Wildcards with Type Variables 2146.4.3
Unbounded Wildcards 2156.4.4
Wildcard Capture 2166.4.5

xiiiContents

Generics in the Java Virtual Machine 2166.5
Type Erasure 2176.5.1
Cast Insertion 2176.5.2
Bridge Methods 2186.5.3

Restrictions on Generics 2206.6
No Primitive Type Arguments 2206.6.1
At Runtime, All Types Are Raw 2206.6.2
You Cannot Instantiate Type Variables 2216.6.3
You Cannot Construct Arrays of Parameterized
Types 223

6.6.4

Class Type Variables Are Not Valid in Static
Contexts 224

6.6.5

Methods May Not Clash after Erasure 2246.6.6
Exceptions and Generics 2256.6.7

Reflection and Generics 2266.7
The Class<T> Class 2276.7.1
Generic Type Information in the Virtual
Machine 227

6.7.2

Exercises 229

COLLECTIONS 2357
An Overview of the Collections Framework 2367.1
Iterators 2407.2
Sets 2427.3
Maps 2437.4
Other Collections 2477.5

Properties 2477.5.1
Bit Sets 2487.5.2
Enumeration Sets and Maps 2507.5.3
Stacks, Queues, Deques, and Priority Queues 2507.5.4
Weak Hash Maps 2517.5.5

Views 2527.6
Small Collections 2527.6.1
Ranges 2537.6.2

Contentsxiv

Unmodifiable Views 2547.6.3
Exercises 255

STREAMS 2598
From Iterating to Stream Operations 2608.1
Stream Creation 2618.2
The filter, map, and flatMap Methods 2638.3
Extracting Substreams and Combining Streams 2648.4
Other Stream Transformations 2658.5
Simple Reductions 2668.6
The Optional Type 2678.7

How to Work with Optional Values 2678.7.1
How Not to Work with Optional Values 2698.7.2
Creating Optional Values 2698.7.3
Composing Optional Value Functions with flatMap 2698.7.4
Turning an Optional Into a Stream 2708.7.5

Collecting Results 2718.8
Collecting into Maps 2738.9
Grouping and Partitioning 2748.10
Downstream Collectors 2758.11
Reduction Operations 2778.12
Primitive Type Streams 2798.13
Parallel Streams 2808.14

Exercises 283

PROCESSING INPUT AND OUTPUT 2879
Input/Output Streams, Readers, and Writers 2889.1

Obtaining Streams 2889.1.1
Reading Bytes 2899.1.2
Writing Bytes 2909.1.3
Character Encodings 2909.1.4
Text Input 2939.1.5
Text Output 2949.1.6
Reading and Writing Binary Data 2959.1.7

xvContents

Random-Access Files 2969.1.8
Memory-Mapped Files 2979.1.9
File Locking 2979.1.10

Paths, Files, and Directories 2989.2
Paths 2989.2.1
Creating Files and Directories 3009.2.2
Copying, Moving, and Deleting Files 3019.2.3
Visiting Directory Entries 3029.2.4
ZIP File Systems 3059.2.5

HTTP Connections 3069.3
The URLConnection and HttpURLConnection Classes 3069.3.1
The HTTP Client API 3079.3.2

Regular Expressions 3109.4
The Regular Expression Syntax 3109.4.1
Finding One Match 3149.4.2
Finding All Matches 3159.4.3
Groups 3169.4.4
Splitting along Delimiters 3179.4.5
Replacing Matches 3179.4.6
Flags 3189.4.7

Serialization 3199.5
The Serializable Interface 3199.5.1
Transient Instance Variables 3219.5.2
The readObject and writeObject Methods 3219.5.3
The readResolve and writeReplace Methods 3229.5.4
Versioning 3249.5.5

Exercises 325

CONCURRENT PROGRAMMING 32910
Concurrent Tasks 33010.1

Running Tasks 33010.1.1
Futures 33310.1.2

Asynchronous Computations 33510.2
Completable Futures 33510.2.1

Contentsxvi

Composing Completable Futures 33710.2.2
Long-Running Tasks in User-Interface Callbacks 34010.2.3

Thread Safety 34110.3
Visibility 34210.3.1
Race Conditions 34410.3.2
Strategies for Safe Concurrency 34610.3.3
Immutable Classes 34710.3.4

Parallel Algorithms 34810.4
Parallel Streams 34810.4.1
Parallel Array Operations 34910.4.2

Threadsafe Data Structures 35010.5
Concurrent Hash Maps 35010.5.1
Blocking Queues 35210.5.2
Other Threadsafe Data Structures 35410.5.3

Atomic Counters and Accumulators 35410.6
Locks and Conditions 35710.7

Locks 35710.7.1
The synchronized Keyword 35810.7.2
Waiting on Conditions 36010.7.3

Threads 36210.8
Starting a Thread 36310.8.1
Thread Interruption 36410.8.2
Thread-Local Variables 36510.8.3
Miscellaneous Thread Properties 36610.8.4

Processes 36610.9
Building a Process 36710.9.1
Running a Process 36810.9.2
Process Handles 37010.9.3

Exercises 371

ANNOTATIONS 37711
Using Annotations 37811.1

Annotation Elements 37811.1.1
Multiple and Repeated Annotations 38011.1.2

xviiContents

Annotating Declarations 38011.1.3
Annotating Type Uses 38111.1.4
Making Receivers Explicit 38211.1.5

Defining Annotations 38311.2
Standard Annotations 38611.3

Annotations for Compilation 38711.3.1
Annotations for Managing Resources 38811.3.2
Meta-Annotations 38911.3.3

Processing Annotations at Runtime 39111.4
Source-Level Annotation Processing 39411.5

Annotation Processors 39411.5.1
The Language Model API 39511.5.2
Using Annotations to Generate Source Code 39511.5.3

Exercises 398

THE DATE AND TIME API 40112
The Time Line 40212.1
Local Dates 40412.2
Date Adjusters 40712.3
Local Time 40912.4
Zoned Time 41012.5
Formatting and Parsing 41312.6
Interoperating with Legacy Code 41612.7

Exercises 417

INTERNATIONALIZATION 42113
Locales 42213.1

Specifying a Locale 42313.1.1
The Default Locale 42613.1.2
Display Names 42613.1.3

Number Formats 42713.2
Currencies 42813.3
Date and Time Formatting 42913.4
Collation and Normalization 43113.5

Contentsxviii

Message Formatting 43313.6
Resource Bundles 43513.7

Organizing Resource Bundles 43513.7.1
Bundle Classes 43713.7.2

Character Encodings 43813.8
Preferences 43913.9

Exercises 441

COMPILING AND SCRIPTING 44314
The Compiler API 44414.1

Invoking the Compiler 44414.1.1
Launching a Compilation Task 44414.1.2
Reading Source Files from Memory 44514.1.3
Writing Byte Codes to Memory 44614.1.4
Capturing Diagnostics 44714.1.5

The Scripting API 44814.2
Getting a Scripting Engine 44814.2.1
Bindings 44914.2.2
Redirecting Input and Output 44914.2.3
Calling Scripting Functions and Methods 45014.2.4
Compiling a Script 45214.2.5

The Nashorn Scripting Engine 45214.3
Running Nashorn from the Command Line 45214.3.1
Invoking Getters, Setters, and Overloaded
Methods 453

14.3.2

Constructing Java Objects 45414.3.3
Strings in JavaScript and Java 45514.3.4
Numbers 45614.3.5
Working with Arrays 45714.3.6
Lists and Maps 45814.3.7
Lambdas 45814.3.8
Extending Java Classes and Implementing Java
Interfaces 459

14.3.9

Exceptions 46114.3.10

xixContents

Shell Scripting with Nashorn 46114.4
Executing Shell Commands 46214.4.1
String Interpolation 46214.4.2
Script Inputs 46314.4.3

Exercises 464

THE JAVA PLATFORM MODULE SYSTEM 46915
The Module Concept 47015.1
Naming Modules 47215.2
The Modular “Hello, World!” Program 47215.3
Requiring Modules 47415.4
Exporting Packages 47615.5
Modules and Reflective Access 47915.6
Modular JARs 48215.7
Automatic Modules and the Unnamed Module 48415.8
Command-Line Flags for Migration 48515.9
Transitive and Static Requirements 48715.10
Qualified Exporting and Opening 48915.11
Service Loading 49015.12
Tools for Working with Modules 49115.13

Exercises 494

Index 497

Contentsxx

Java is now over twenty years old, and the classic book, Core Java, covers, in
meticulous detail, not just the language but all core libraries and a multitude
of changes between versions, spanning two volumes and well over
2,000 pages. However, if you just want to be productive with modern Java,
there is a much faster, easier pathway for learning the language and core li-
braries. In this book, I don’t retrace history and don’t dwell on features of
past versions. I show you the good parts of Java as it exists today, with Java 9,
so you can put your knowledge to work quickly.

As with my previous “Impatient” books, I quickly cut to the chase, showing
you what you need to know to solve a programming problem without lecturing
about the superiority of one paradigm over another. I also present the infor-
mation in small chunks, organized so that you can quickly retrieve it when
needed.

Assuming you are proficient in some other programming language, such as
C++, JavaScript, Objective C, PHP, or Ruby, with this book you will learn
how to become a competent Java programmer. I cover all aspects of Java that
a developer needs to know, including the powerful concepts of lambda ex-
pressions and streams. I tell you where to find out more about old-fashioned
concepts that you might still see in legacy code, but I don’t dwell on them.

A key reason to use Java is to tackle concurrent programming. With parallel
algorithms and threadsafe data structures readily available in the Java library,

xxi

Preface

the way application programmers should handle concurrent programming
has completely changed. I provide fresh coverage, showing you how to use
the powerful library features instead of error-prone low-level constructs.

Traditionally, books on Java have focused on user interface programming—but
nowadays, few developers produce user interfaces on desktop computers.
If you intend to use Java for server-side programming or Android program-
ming, you will be able to use this book effectively without being distracted
by desktop GUI code.

Finally, this book is written for application programmers, not for a college
course and not for systems wizards. The book covers issues that application
programmers need to wrestle with, such as logging and working with files—but
you won’t learn how to implement a linked list by hand or how to write a
web server.

I hope you enjoy this rapid-fire introduction into modern Java, and I hope it
will make your work with Java productive and enjoyable.

If you find errors or have suggestions for improvement, please visit
http://horstmann.com/javaimpatient and leave a comment. On that page, you will
also find a link to an archive file containing all code examples from the book.

Prefacexxii

My thanks go, as always, to my editor Greg Doench, who enthusiastically
supported the vision of a short book that gives a fresh introduction to Java
SE 9. Dmitry Kirsanov and Alina Kirsanova once again turned an XHTML
manuscript into an attractive book with amazing speed and attention to detail.
My special gratitude goes to the excellent team of reviewers for both editions
who spotted many errors and gave thoughtful suggestions for improvement.
They are: Andres Almiray, Gail Anderson, Paul Anderson, Marcus Biel, Brian
Goetz, Marty Hall, Mark Lawrence, Doug Lea, Simon Ritter, Yoshiki Shibata,
and Christian Ullenboom.

Cay Horstmann
San Francisco
July 2017

xxiii

Acknowledgments

This page intentionally left blank

Cay S. Horstmann is the author of Java SE 8 for the Really Impatient and Scala
for the Impatient (both from Addison-Wesley), is principal author of Core Java™,
Volumes I and II, Tenth Edition (Prentice Hall, 2016), and has written a dozen
other books for professional programmers and computer science students.
He is a professor of computer science at San Jose State University and is a
Java Champion.

xxv

About the Author

Topics in This Chapter

1.1 Our First Program — page 2

1.2 Primitive Types — page 10

1.3 Variables — page 14

1.4 Arithmetic Operations — page 17

1.5 Strings — page 24

1.6 Input and Output — page 32

1.7 Control Flow — page 36

1.8 Arrays and Array Lists — page 43

1.9 Functional Decomposition — page 52

Exercises — page 54

Fundamental
Programming
Structures

In this chapter, you will learn about the basic data types and control structures
of the Java language. I assume that you are an experienced programmer in
some other language and that you are familiar with concepts such as variables,
loops, function calls, and arrays, but perhaps with a different syntax. This
chapter will get you up to speed on the Java way. I will also give you some
tips on the most useful parts of the Java API for manipulating common data
types.

The key points of this chapter are:

1. In Java, all methods are declared in a class. You invoke a nonstatic method
on an object of the class to which the method belongs.

2. Static methods are not invoked on objects. Program execution starts with
the static main method.

3. Java has eight primitive types: four signed integral types, two floating-
point types, char, and boolean.

4. The Java operators and control structures are very similar to those of C
or JavaScript.

5. The Math class provides common mathematical functions.

6. String objects are sequences of characters or, more precisely, Unicode
code points in the UTF-16 encoding.

1

1Chapter

7. With the System.out object, you can display output in a terminal window.
A Scanner tied to System.in lets you read terminal input.

8. Arrays and collections can be used to collect elements of the same type.

1.1 Our First Program
When learning any new programming language, it is traditional to start with
a program that displays the message “Hello, World!”. That is what we will
do in the following sections.

1.1.1 Dissecting the “Hello, World” Program
Without further ado, here is the “Hello, World” program in Java.

package ch01.sec01;

// Our first Java program

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}

Let’s examine this program:

• Java is an object-oriented language. In your program, you manipulate
(mostly) objects by having them do work. Each object that you manipu-
late belongs to a specific class, and we say that the object is an instance
of that class. A class defines what an object’s state can be and and what
it can do. In Java, all code is defined inside classes. We will look at objects
and classes in detail in Chapter 2. This program is made up of a single
class HelloWorld.

• main is a method, that is, a function declared inside a class. The main method
is the first method that is called when the program runs. It is declared as
static to indicate that the method does not operate on any objects. (When
main gets called, there are only a handful of predefined objects, and none
of them are instances of the HelloWorld class.) The method is declared as
void to indicate that it does not return any value. See Section 1.8.8,
“Command-Line Arguments” (page 49) for the meaning of the parameter
declaration String[] args.

• In Java, you can declare many features as public or private, and there are
a couple of other visibility levels as well. Here, we declare the HelloWorld

Chapter 1 Fundamental Programming Structures2

class and the main method as public, which is the most common arrangement
for classes and methods.

• A package is a set of related classes. It is a good idea to place each class
in a package so you can group related classes together and avoid conflicts
when multiple classes have the same name. In this book, we’ll use chapter
and section numbers as package names. The full name of our class is
ch01.sec01.HelloWorld. Chapter 2 has more to say about packages and package
naming conventions.

• The line starting with // is a comment. All characters between // and the
end of the line are ignored by the compiler and are meant for human
readers only.

• Finally, we come to the body of the main method. In our example, it consists
of a single line with a command to print a message to System.out, an object
representing the “standard output” of the Java program.

As you can see, Java is not a scripting language that can be used to quickly
dash off a few commands. It is squarely intended as a language for larger
programs that benefit from being organized into classes, packages, and
modules. (Modules are introduced in Chapter 15.)

Java is also quite simple and uniform. Some languages have global variables
and functions as well as variables and methods inside classes. In Java, every-
thing is declared inside a class. This uniformity can lead to somewhat verbose
code, but it makes it easy to understand the meaning of a program.

NOTE: You have just seen a // comment that extends to the end of
the line. You can also have multiline comments between /* and */
delimiters, such as

/*
 This is the first sample program in Core Java for the Impatient.
 The program displays the traditional greeting "Hello, World!".
*/

There is a third comment style, called documentation comment, with /**
and */ as delimiters, that you will see in the next chapter.

1.1.2 Compiling and Running a Java Program
To compile and run this program, you need to install the Java Development
Kit (JDK) and, optionally, an integrated development environment (IDE). You
should also download the sample code, which you will find at the companion
website for this book, http://horstmann.com/javaimpatient. Since instructions for

31.1 Our First Program

installing software don’t make for interesting reading, I put them on the
companion website as well.

Once you have installed the JDK, open a terminal window, change to the
directory containing the ch01 directory, and run the commands

javac ch01/sec01/HelloWorld.java
java ch01.sec01.HelloWorld

The familiar greeting will appear in the terminal window (see Figure 1-1).

Note that two steps were involved to execute the program. The javac command
compiles the Java source code into an intermediate machine-independent
representation, called byte codes, and saves them in class files. The java com-
mand launches a virtual machine that loads the class files and executes the
byte codes.

Once compiled, byte codes can run on any Java virtual machine, whether on
your desktop computer or on a device in a galaxy far, far away. The promise
of “write once, run anywhere” was an important design criterion for Java.

Figure 1-1 Running a Java program in a terminal window

Chapter 1 Fundamental Programming Structures4

NOTE: The javac compiler is invoked with the name of a file, with slashes
separating the path segments, and an extension .java. The java virtual
machine launcher is invoked with the name of a class, with dots
separating the package segments, and no extension.

To run the program in an IDE, you need to first make a project, as described
in the installation instructions. Then, select the HelloWorld class and tell the IDE
to run it. Figure 1-2 shows how this looks in Eclipse. Eclipse is a popular
IDE, but there are many other excellent choices. As you get more comfortable
with Java programming, you should try out a few and pick one that you like.

Figure 1-2 Running a Java program inside the Eclipse IDE

Congratulations! You have just followed the time-honored ritual of running
the “Hello, World!” program in Java. Now we are ready to examine the basics
of the Java language.

51.1 Our First Program

1.1.3 Method Calls
Let us have a closer look at the single statement of the main method:

System.out.println("Hello, World!");

System.out is an object. It is an instance of a class called PrintStream. The PrintStream
class has methods println, print, and so on. These methods are called instance
methods because they operate on objects, or instances, of the class.

To invoke an instance method on an object, you use the dot notation
object.methodName(arguments)

In this case, there is just one argument, the string "Hello, World!".

Let’s try it with another example. Strings such as "Hello, World!" are instances
of the String class. The String class has a method length that returns the length of
a String object. To call the method, you again use the dot notation:

"Hello, World!".length()

The length method is invoked on the object "Hello, World!", and it has no argu-
ments. Unlike the println method, the length method returns a result. One way
of using that result is to print it:

System.out.println("Hello, World!".length());

Give it a try. Make a Java program with this statement and run it to see how
long the string is.

In Java, you need to construct most objects (unlike the System.out and "Hello,
World!" objects, which are already there, ready for you to use). Here is a simple
example.

An object of the Random class can generate random numbers. You construct a
Random object with the new operator:

new Random()

After the class name is the list of construction arguments, which is empty in
this example.

You can call a method on the constructed object. The call
new Random().nextInt()

yields the next integer that the newly constructed random number generator
has to offer.

If you want to invoke more than one method on an object, store it in a
variable (see Section 1.3, “Variables,” page 14). Here we print two random
numbers:

Chapter 1 Fundamental Programming Structures6

Random generator = new Random();
System.out.println(generator.nextInt());
System.out.println(generator.nextInt());

NOTE: The Random class is declared in the java.util package. To use it
in your program, add an import statement, like this:

package ch01.sec01;

import java.util.Random;

public class MethodDemo {
 ...
}

We will look at packages and the import statement in more detail in
Chapter 2.

1.1.4 JShell
In Section 1.1.2, “Compiling and Running a Java Program” (page 3), you saw
how to compile and run a Java program. Java 9 introduces another way of
working with Java. The JShell program provides a “read-evaluate-print loop”
(REPL) where you type a Java expression, JShell evaluates your input, prints
the result, and waits for your next input. To start JShell, simply type jshell in
a terminal window (Figure 1-3).

JShell starts with a greeting, followed by a prompt:
| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell>

Now type any Java expression, such as
"Hello, World!".length()

JShell responds with the result and another prompt.
$1 ==> 13

jshell>

Note that you do not type System.out.println. JShell automatically prints the
value of every expression that you enter.

The $1 in the output indicates that the result is available in further calculations.
For example, if you type

3 * $1 + 3

71.1 Our First Program

Figure 1-3 Running JShell

the response is
$2 ==> 42

If you need a variable many times, you can give it a more memorable name.
You have to follow the Java syntax and specify both the type and the
name (see Section 1.3, “Variables,” page 14). For example,

jshell> int answer = 42
answer ==> 42

You can have JShell fill in the type for you. Type an expression and instead
of hitting the Enter key, hit Shift+Tab and then the V key. For example, when
you type

new Random()

followed by Shift+Tab and the V key, you get
jshell> Random = new Random()

with the cursor positioned just before the = symbol. Now type a variable
name and hit Enter:

jshell> Random generator = new Random()
generator ==> java.util.Random@3fee9989

Chapter 1 Fundamental Programming Structures8

Another useful feature is tab completion. Type
generator.

followed by the Tab key. You get a list of all methods that you can invoke
on the generator variable:

jshell> generator.
doubles(equals(getClass() hashCode()
ints(longs(nextBoolean() nextBytes(
nextDouble() nextFloat() nextGaussian() nextInt(
nextLong() notify() notifyAll() setSeed(
toString() wait(

Now type ne and hit the Tab key again. The method name is completed to
next, and you get a shorter list:

jshell> generator.next
nextBoolean() nextBytes(nextDouble() nextFloat()
nextGaussian() nextInt(nextLong()

Type a D and Tab again, and now the only completion, nextDouble(), is filled
in. Hit Enter to accept it:

jshell> generator.nextDouble()
$8 ==> 0.9560346568377398

NOTE: Note that in the autocompletion list, methods that require an
argument are only followed by a left parenthesis, such as nextInt(, but
methods without arguments have both parentheses, such as nextBoolean().

To repeat a command, hit the ↑ key until you see the line that you want to
reissue or edit. You can move the cursor in the line with the ← and → keys,
and add or delete characters. Hit Enter when you are done. For example, hit
↑ and replace Double with Int, then hit Enter:

jshell> generator.nextInt()
$9 ==> -352355569

By default, JShell imports the following packages:
java.io
java.math
java.net
java.nio.file
java.util
java.util.concurrent
java.util.function
java.util.prefs
java.util.regex
java.util.stream

91.1 Our First Program

