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Preface

Java is now over twenty years old, and the classic book, Core Java, covers, in
meticulous detail, not just the language but all core libraries and a multitude
of changes between versions, spanning two volumes and well over
2,000 pages. However, if you just want to be productive with modern Java,
there is a much faster, easier pathway for learning the language and core li-
braries. In this book, I don't retrace history and dont dwell on features of
past versions. I show you the good parts of Java as it exists today, with Java 9,
so you can put your knowledge to work quickly.

As with my previous “Impatient” books, I quickly cut to the chase, showing
you what you need to know to solve a programming problem without lecturing
about the superiority of one paradigm over another. I also present the infor-
mation in small chunks, organized so that you can quickly retrieve it when
needed.

Assuming you are proficient in some other programming language, such as
C++, JavaScript, Objective C, PHP, or Ruby, with this book you will learn
how to become a competent Java programmer. I cover all aspects of Java that
a developer needs to know, including the powerful concepts of lambda ex-
pressions and streams. I tell you where to find out more about old-fashioned
concepts that you might still see in legacy code, but I don't dwell on them.

A key reason to use Java is to tackle concurrent programming. With parallel
algorithms and threadsafe data structures readily available in the Java library,

xxi



Preface

the way application programmers should handle concurrent programming
has completely changed. I provide fresh coverage, showing you how to use
the powerful library features instead of error-prone low-level constructs.

Traditionally, books on Java have focused on user interface programming—but
nowadays, few developers produce user interfaces on desktop computers.
If you intend to use Java for server-side programming or Android program-
ming, you will be able to use this book effectively without being distracted
by desktop GUI code.

Finally, this book is written for application programmers, not for a college
course and not for systems wizards. The book covers issues that application
programmers need to wrestle with, such as logging and working with files—but
you won't learn how to implement a linked list by hand or how to write a
web server.

I hope you enjoy this rapid-fire introduction into modern Java, and I hope it
will make your work with Java productive and enjoyable.

If you find errors or have suggestions for improvement, please visit
http://horstmann.com/javaimpatient and leave a comment. On that page, you will
also find a link to an archive file containing all code examples from the book.
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Chapfer

In this chapter, you will learn about the basic data types and control structures
of the Java language. I assume that you are an experienced programmer in
some other language and that you are familiar with concepts such as variables,
loops, function calls, and arrays, but perhaps with a different syntax. This
chapter will get you up to speed on the Java way. I will also give you some
tips on the most useful parts of the Java API for manipulating common data

types.
The key points of this chapter are:

1. InJava, all methods are declared in a class. You invoke a nonstatic method
on an object of the class to which the method belongs.

2. Static methods are not invoked on objects. Program execution starts with
the static main method.

3. Java has eight primitive types: four signed integral types, two floating-
point types, char, and boolean.

4. The Java operators and control structures are very similar to those of C
or JavaScript.

The Math class provides common mathematical functions.

String objects are sequences of characters or, more precisely, Unicode
code points in the UTF-16 encoding.
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7. With the System.out object, you can display output in a terminal window.

A Scanner tied to System.in lets you read terminal input.

8. Arrays and collections can be used to collect elements of the same type.

1.1 Our First Program

When learning any new programming language, it is traditional to start with
a program that displays the message “Hello, World!”. That is what we will
do in the following sections.

1.1.1 Dissecting the “Hello, World” Program

Without further ado, here is the “Hello, World” program in Java.

package ch0l.sec0l;

// Our first Java program

public class HelloWorld {

}

public static void main(String[] args) {
System.out.println("Hello, World!");
}

Let's examine this program:

Java is an object-oriented language. In your program, you manipulate
(mostly) objects by having them do work. Each object that you manipu-
late belongs to a specific class, and we say that the object is an instance
of that class. A class defines what an object’s state can be and and what
it can do. In Java, all code is defined inside classes. We will look at objects
and classes in detail in Chapter 2. This program is made up of a single
class HellowWorld.

main is a method, that is, a function declared inside a class. The main method
is the first method that is called when the program runs. It is declared as
static to indicate that the method does not operate on any objects. (When
main gets called, there are only a handful of predefined objects, and none
of them are instances of the HelloWorld class.) The method is declared as
void to indicate that it does not return any value. See Section 1.8.8,
“Command-Line Arguments” (page 49) for the meaning of the parameter
declaration String[] args.

In Java, you can declare many features as public or private, and there are
a couple of other visibility levels as well. Here, we declare the HelloWorld
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class and the main method as public, which is the most common arrangement
for classes and methods.

e A package is a set of related classes. It is a good idea to place each class
in a package so you can group related classes together and avoid conflicts
when multiple classes have the same name. In this book, we'll use chapter
and section numbers as package names. The full name of our class is
che1.seco1.HelloWorld. Chapter 2 has more to say about packages and package
naming conventions.

e The line starting with // is a comment. All characters between // and the
end of the line are ignored by the compiler and are meant for human
readers only.

e Finally, we come to the body of the main method. In our example, it consists
of a single line with a command to print a message to System.out, an object
representing the “standard output” of the Java program.

As you can see, Java is not a scripting language that can be used to quickly
dash off a few commands. It is squarely intended as a language for larger
programs that benefit from being organized into classes, packages, and
modules. (Modules are introduced in Chapter 15.)

Java is also quite simple and uniform. Some languages have global variables
and functions as well as variables and methods inside classes. In Java, every-
thing is declared inside a class. This uniformity can lead to somewhat verbose
code, but it makes it easy to understand the meaning of a program.

% NOTE: You have just seen a // comment that extends to the end of
the line. You can also have multiine comments between /+ and */
delimiters, such as
/*
This is the first sample program in Core Java for the Impatient.
The program displays the traditional greeting "Hello, World!".
*/
There is a third comment style, called documentation comment, with /+x
and */ as delimiters, that you will see in the next chapter.

1.1.2 Compiling and Running a Java Program

To compile and run this program, you need to install the Java Development
Kit (JDK) and, optionally, an integrated development environment (IDE). You
should also download the sample code, which you will find at the companion
website for this book, http://horstmann.com/javaimpatient. Since instructions for
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installing software don't make for interesting reading, I put them on the
companion website as well.

Once you have installed the JDK, open a terminal window, change to the
directory containing the che1 directory, and run the commands

javac ch0@1/sec01/HelloWorld.java
java ch01.sec01.HelloWorld

The familiar greeting will appear in the terminal window (see Figure 1-1).

Note that two steps were involved to execute the program. The javac command
compiles the Java source code into an intermediate machine-independent
representation, called byte codes, and saves them in class files. The java com-
mand launches a virtual machine that loads the class files and executes the
byte codes.

Once compiled, byte codes can run on any Java virtual machine, whether on
your desktop computer or on a device in a galaxy far, far away. The promise
of “write once, run anywhere” was an important design criterion for Java.

~$ cd books/cji/code

~/books/cji/code$ javac ch@l/sec@l/HelloWorld.java
~/books/cji/code$ 1s ch0l/secBdl

HelloWorld.class HellowWorld.java MethodDemo.java
~/books/cji/codefijava ch@l.sec®l.HelloWorld
Hello, World!

~/bookk/cji/codes |

Class file

Program output

Figure 1-1 Running a Java program in a terminal window



1.1 m Our First Program “

E NOTE: The javac compiler is invoked with the name of a file, with slashes
separating the path segments, and an extension .java. The java virtual
machine launcher is invoked with the name of a class, with dots

separating the package segments, and no extension.

To run the program in an IDE, you need to first make a project, as described
in the installation instructions. Then, select the Helloworld class and tell the IDE
to run it. Figure 1-2 shows how this looks in Eclipse. Eclipse is a popular
IDE, but there are many other excellent choices. As you get more comfortable
with Java programming, you should try out a few and pick one that you like.

Java - Core Java for the Impatient/ch01/sec0l/HelloWorld.java - Eclipse

File Edit Source Refactor Navigate Search Project Run Window Help

HE iwider O - Q-8 @ -i®F iy f AR
-] Java EE & Java
2 Package Explorer 2 = 0 [J] Helloworld.java 2 IntegerDemo.java = B g Outline =R
BEg - i package chel.sec@l; B 4 & o o w
= @ Core Java for the Impatient W 3 // Our first Java program -
4
= i chol.5ec01 © 5 public class Helloworld { # chol.sec0l
v O Helloworld.java M os public static void main(String[] args) { - €. Helloworld
< @ ch0l.sec02 7 System.out.printin("Hello, World!"); . - .
3 . il 8 } @ ° main(String[]}
b [§ IntegerDemo.java 9 ¥
{3 chol.sec03 10

8 ch0l1.sec04
# ch0l.sec05
# ch01.5ec06
I # ch0l.sec07
5 ch01.sec08
# ch0l.sec09
I =4 |RE System Library [jdk1
= RemoteSystemsTempFiles

Program Output

Problems Javadoc reclaration & Console 3 = a
x % & & [gEg -~ o
<terminated> HelbWorld [Java Application] /data/apps/jdk1.8.0/binfjava (8 juin 2014 14:30:40)
Hello, world! H

Figure 1-2 Running a Java program inside the Eclipse IDE

Congratulations! You have just followed the time-honored ritual of running
the “Hello, World!” program in Java. Now we are ready to examine the basics
of the Java language.
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1.1.3 Method Calls

Let us have a closer look at the single statement of the main method:
System.out.printin("Hello, World!");

System.out is an object. It is an instance of a class called PrintStream. The PrintStream
class has methods println, print, and so on. These methods are called instance
methods because they operate on objects, or instances, of the class.

To invoke an instance method on an object, you use the dot notation

object.methodName(arquments)
In this case, there is just one argument, the string "Hello, World!".

Let's try it with another example. Strings such as "Hello, World!" are instances
of the string class. The String class has a method length that returns the length of
a String object. To call the method, you again use the dot notation:

"Hello, World!".length()
The length method is invoked on the object "Hello, World!", and it has no argu-

ments. Unlike the println method, the length method returns a result. One way
of using that result is to print it:

System.out.println("Hello, World!".length());

Give it a try. Make a Java program with this statement and run it to see how
long the string is.

In Java, you need to construct most objects (unlike the system.out and "Hello,
World!" objects, which are already there, ready for you to use). Here is a simple
example.

An object of the Randon class can generate random numbers. You construct a
Random object with the new operator:

new Random()

After the class name is the list of construction arguments, which is empty in
this example.

You can call a method on the constructed object. The call
new Random().nextInt()

yields the next integer that the newly constructed random number generator
has to offer.

If you want to invoke more than one method on an object, store it in a
variable (see Section 1.3, “Variables,” page 14). Here we print two random
numbers:
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Random generator = new Random();
System.out.printin(generator.nextInt());
System.out.println(generator.nextInt());

NOTE: The Random class is declared in the java.util package. To use it
in your program, add an import statement, like this:

package ch0l.sec0l;

import java.util.Random;

public class MethodDemo {

}
We will look at packages and the import statement in more detail in
Chapter 2.

1.1.4 JShell

In Section 1.1.2, “Compiling and Running a Java Program” (page 3), you saw
how to compile and run a Java program. Java 9 introduces another way of
working with Java. The JShell program provides a “read-evaluate-print loop”
(REPL) where you type a Java expression, JShell evaluates your input, prints
the result, and waits for your next input. To start JShell, simply type jshell in
a terminal window (Figure 1-3).

JShell starts with a greeting, followed by a prompt:

| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell>

Now type any Java expression, such as
"Hello, World!".length()

JShell responds with the result and another prompt.
$1 ==> 13

jshell>

Note that you do not type System.out.println. JShell automatically prints the
value of every expression that you enter.

The $1 in the output indicates that the result is available in further calculations.
For example, if you type

3% $1+3
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E] Terminal

~% jshell
| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell> "Hello, World!".length()
$1 ==> 13

jshell> new Random().nextInt()
$2 ==> -1416186035

jshell> Random generator = new Random(42)
generator ==> java.util.Random@4cf777e8

jshell> generator.nextInt()
$4 ==> -1170105035

jshell> generator.nextInt()
$5 ==> 234785527

jshell> generator.next
nextBoolean() nextBytes( nextDouble() nextFloat()
nextGaussian() nextInt( nextLong()

jshell> generator.nextl

Figure 1-3 Running JShell

the response is
$2 ==> 42
If you need a variable many times, you can give it a more memorable name.

You have to follow the Java syntax and specify both the type and the
name (see Section 1.3, “Variables,” page 14). For example,

jshell> int answer = 42
answer ==> 42

You can have JShell fill in the type for you. Type an expression and instead
of hitting the Enter key, hit Shift+Tab and then the V key. For example, when

you type
new Random()
followed by Shift+Tab and the V key, you get
jshell> Random = new Random()
with the cursor positioned just before the = symbol. Now type a variable
name and hit Enter:

jshell> Random generator = new Random()
generator ==> java.util.Random@3fee9989
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Another useful feature is tab completion. Type

generator.

followed by the Tab key. You get a list of all methods that you can invoke
on the generator variable:

jshell> generator.

doubles( equals( getClass() hashCode()
ints( Tongs( nextBoolean() nextBytes(
nextDouble() nextFloat() nextGaussian()  nextInt(
nextLong() notify() notifyAll() setSeed(
toString() wait(

Now type ne and hit the Tab key again. The method name is completed to
next, and you get a shorter list:
jshell> generator.next

nextBoolean()  nextBytes( nextDouble() nextFloat()
nextGaussian()  nextInt( nextLong()

Type a D and Tab again, and now the only completion, nextbouble(), is filled
in. Hit Enter to accept it:

jshell> generator.nextDouble()
$8 ==> 0.9560346568377398

NOTE: Note that in the autocompletion list, methods that require an
argument are only followed by a left parenthesis, such as nextInt(, but
methods without arguments have both parentheses, such as nextBoolean().

[

To repeat a command, hit the T key until you see the line that you want to
reissue or edit. You can move the cursor in the line with the <— and — keys,
and add or delete characters. Hit Enter when you are done. For example, hit
T and replace Double with Int, then hit Enter:

jshell> generator.nextInt()
$9 ==> -352355569

By default, JShell imports the following packages:

java.io

java.math

java.net
java.nio.file
java.util
java.util.concurrent
java.util.function
java.util.prefs
java.util.regex
java.util.stream



